AP Valve 2017 Seoul, August 16th, 2017

New Mainstream TAVR New Devices

Eberhard Grube, MD, FACC, FSCAI University Hospital, Dept of Medicine II, Bonn, Germany Stanford University, Palo Alto, California, USA

Eberhard Grube, MD

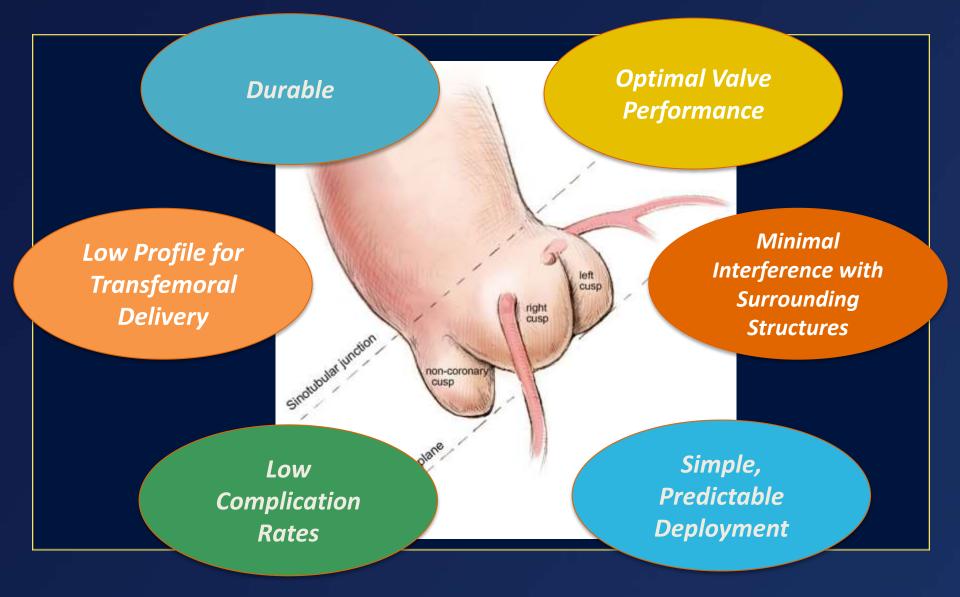
Physician Name

Speaker Bureau/Advisory Board:

Equity Interest:

Company/Relationship

Medtronic: C, SB, AB, OF LivaNova: C, SB, AB Highlife: AB, SB Boston Scientific: C, SB, AB


Millipede: E, SB, C, InSeal Medical: E, AB, Valtech: E, SB, Claret: E, AB Shockwave: E, AB Valve Medical: E, AB Mitraltech: E,AB Mitra/Trilign E, AB, SB

Key

C – Consulting fees, Honoraria SB – Speaker's Bureau

G – Grant and or Research Support E – Equity Interests S – Salary, AB – Advisory Board s, Honoraria R – Royalty Income I – Intellectual Property Rights reau O – Ownership OF – Other Financial Benefits '

The Ideal Transcatheter Aortic Valve

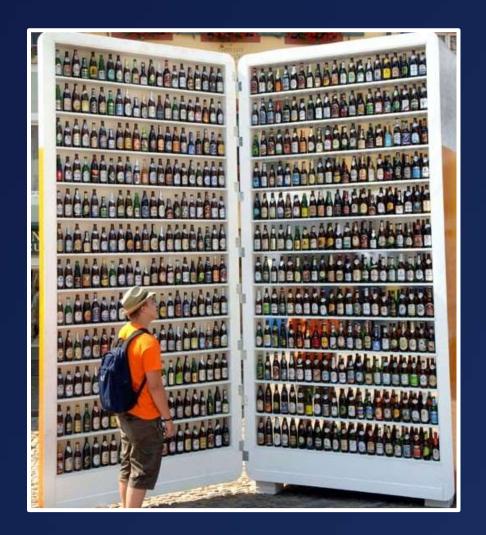
TAVR Systems Global Inventory (#25)

- Sapien 3
- Evolut R

Sy

Current Leaders!

/e


- Centera
- Venus A Valve

- Shanghai Valve
- Trinity
- Colibri
- Inr

Future Contenders?

- NVT (Nautilus)
- J Valve
- Xeltis
- Zurich TEHV

So Many Choices

Transfemoral TAVR Devices Iterative Device Design

- For the continued success of TAVR, complications specific to the therapy, such as paravalvular leak, vascular trauma, and conduction disturbances, should be mitigated.
- A considerable body of evidence has accumulated on new TAVR systems designed with this goal in mind. This presentation will provide an overview of the data.

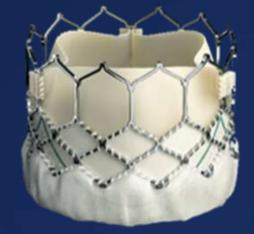
SAPIEN 3

Clinical Trials

Design

Features

•


Long Term Follow-Up

Real World Experience

Design Iterations

Clinical Program

- Balloon-expandable cobalt chromium frame
- Bovine pericardial intra-annular valve
- Outer PET fabric skirt to reduce PVL
- Annular range: 16 28 mm
 - 4 valve sizes: 20, 23, 26, 29 mm
- Expandable 14Fr (vessels ≥ 5.5 mm) or 16Fr (vessels ≥ 6.0 mm) delivery sheaths for TF delivery
 - 14Fr: 20, 23, 26 mm THVs
 - 16Fr: 29 mm THV

SAPIEN 3

30-Day Permanent Pacemaker

SAPIEN 3 SAPIEN 3 Ultra Delivery System On-balloon design removes valve alignment step • Design Pusher is eliminated, reducing steps required during • **Features** deployment Axela Sheath Clinical **Trials** 14Fr compatible for all valve sizes including the 29 mm, for a • 5.5 mm minimum vessel diameter Long Term Seamless sheath design to maintain hemostasis • Follow-Up Transient expansion and active contraction allows for low • profile entry / exit **Real World** Experience **SAPIEN 3 Valve** Design **Iterations SAPIEN 3 Ultra** Axela Sheath Clinical **Delivery System** Program

CENTERA

Features Clinical Trials

•

•

Design

Long Term Follow-Up

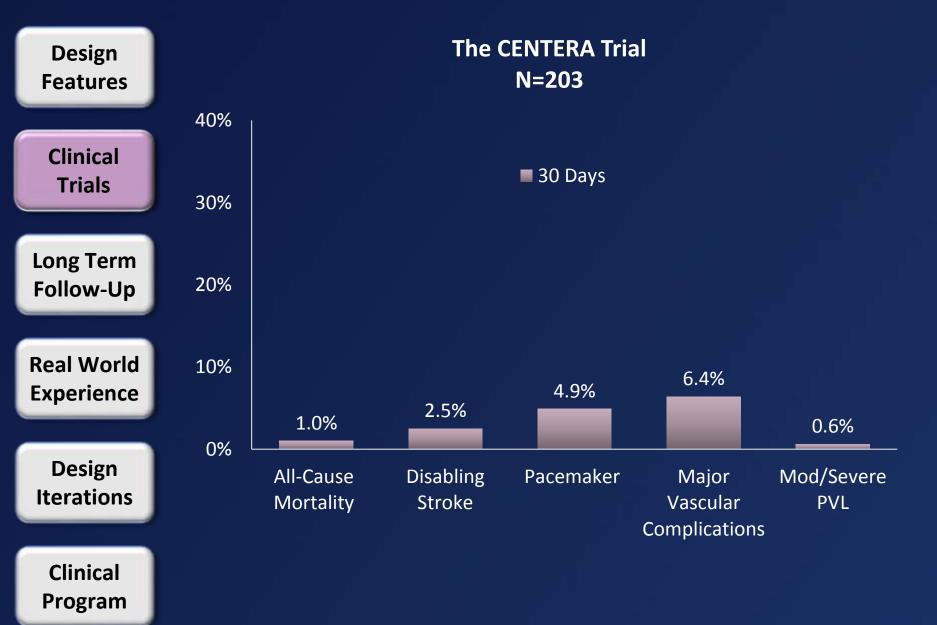
Real World Experience

Design Iterations

Clinical Program

- Self-expanding, contoured Nitinol frame
- Bovine pericardial valve
- Inner PET skirt to reduce PVL
 - Repositionable and recapturable
- Fully pre-attached valve
- Motorized delivery system
- Annular range: 18 26 mm
 - 3 valve sizes: 23, 26, 29 mm
- 14Fr sheath for all valve sizes

CENTERA



The CENTERA Trial¹ Image: Second second

Single arm, observational N = 203 STS: 6.1% Age: 83 years Female: 67.5% Enrolled: March 2015-July 2016

Follow-up through 30 Days

CENTERA

Design

Features

Clinical Trials

Long Term Follow-Up

Real World Experience

Design Iterations

Clinical Program

- Self-expanding Nitinol frame
 - Porcine pericardial supra-annular valve
- Optimized sealing: extended skirt and more conformable frame
- Recapturable

•

•

•

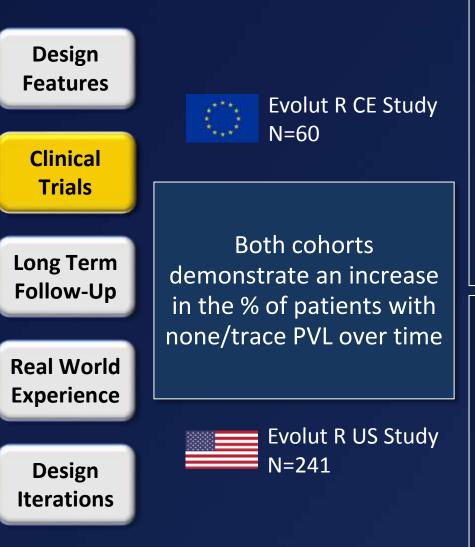
- Annular range: 18 30 mm
 - 4 valve sizes: 23, 26, 29, 34 mm
- 14Fr –equivalent profile, vessels ≥5.0 mm
 - 34 mm system: 16Frequivalent, vessels ≥ 5.5 mm

Evolut R CE Study^{1,2,3}

Single arm, observational N = 60 STS: 7.0 ± 3.7% Age: 82.8 ± 6.1 yrs Female: 66.7% <u>Enrolle</u>d: Oct 2013-July 2014

Follow-up through 2 yrs

Evolut R US IDE Study^{4,5}

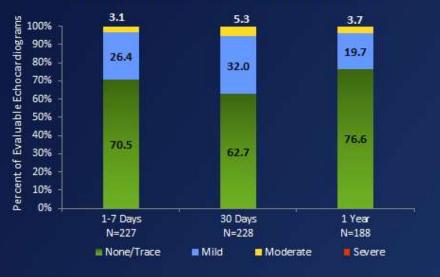

Single arm, observational N = 241STS: 7.4 ± 3.4% Age: 83.3 ± 7.2 years Female: 68.5% Enrolled: Sept 2014-July 2015

Follow-up through 1 yr

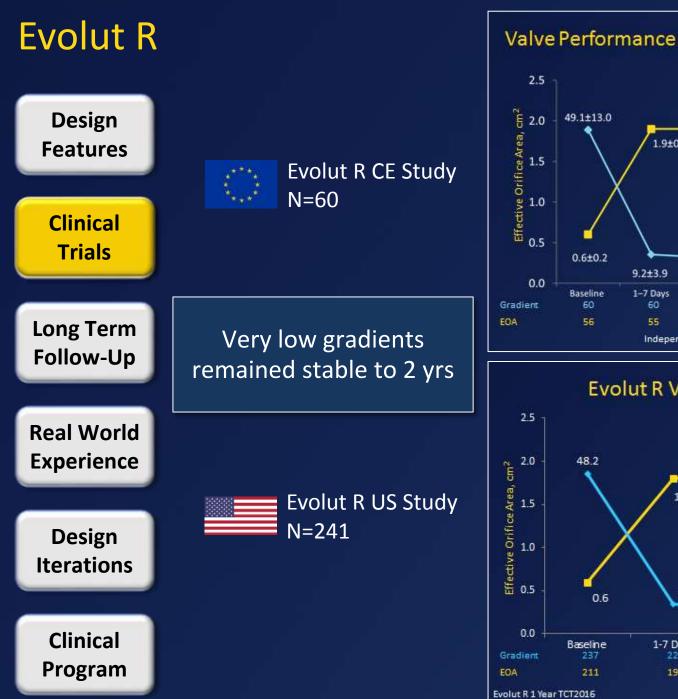
¹Manoharan, et al., *J Am Coll Cardiol Intv* 2015; 8: 1359-67;²Manoharan, et al., presented at TCT 2015; ³Brecker, et al., presented at TCT 2016; ⁴Popma, et al., *J Am Coll Cardiol Intv* 2017; 10:268-75; ⁵Popma, et al., presented at TCT 2016


Clinical

Program



Paravalvular Regurgitation


Evolut R 1 Year TCT2016

Evolut R Paravalvular Regurgitation

TCT2016

TCT2016

Mean

Gradient,

긆

22

60.0

50.0

40.0

30.0

20.0

10.0

0.0

60.0

50.0 Me

40.0

30.0

20.0

10.0

0.0

in Gradient

ሐ

Effective orifice area

1.9±0.7

7.8±3.8

2 Years

1.8

9.0

1 Year

157

Mean gradient

1.9±0.4

7.5±2.7

1 Year

47

44

Effective or if ice area

Mean gradient

1.9

7.8

30 Days

223

205

1.9±0.5 1.9±0.5

8.1±3.3

30 Days

54

Independent core-lab adjudication

Evolut R Valve Performance

1.8

8.9

1-7 Days

198

49.1±13.0

0.6±0.2

Baseline

60

56

48.2

0.6

Baseline

9.2±3.9

1-7 Days

55

30-Day Permanent Pacemaker

Major Vascular Complications

Evolut PRO

Design Features

Clinical Trials

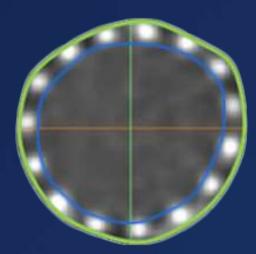
Long Term Follow-Up

Real World Experience

Design Iterations

Clinical Program

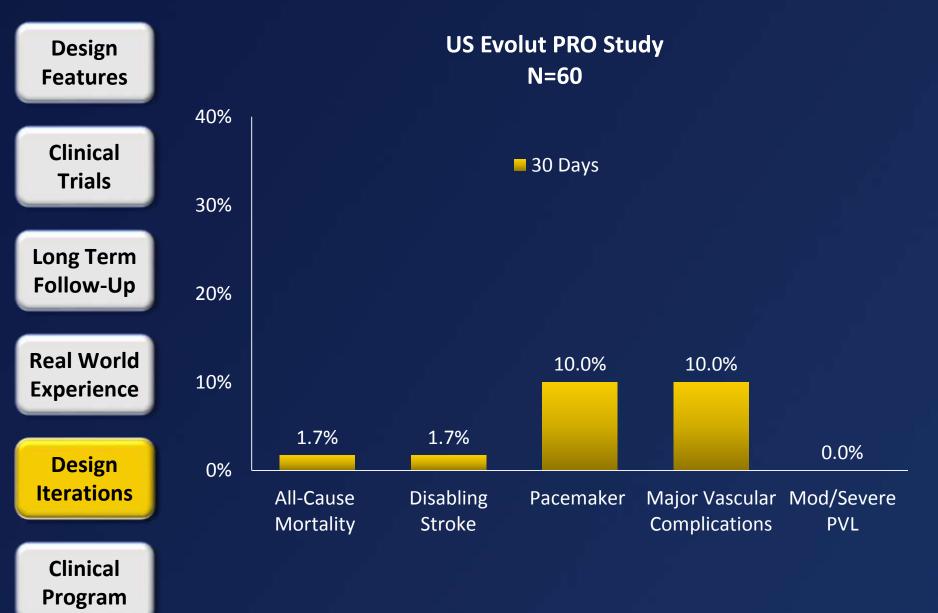
Evolut PRO


•

•

•

- Evolut R with an added pericardial tissue wrap
- Provides greater surface area contact with native annulus
- Reduces "open spaces" between frame struts
 - Enhances healing response due to pericardial tissue properties and increased surface contact



US Evolut PRO Study¹

Single arm, observational N = 60 STS: 6.4% Age: 83 years Female: 65%

Follow-up through 30 Days

Design Features

Clinical Trials

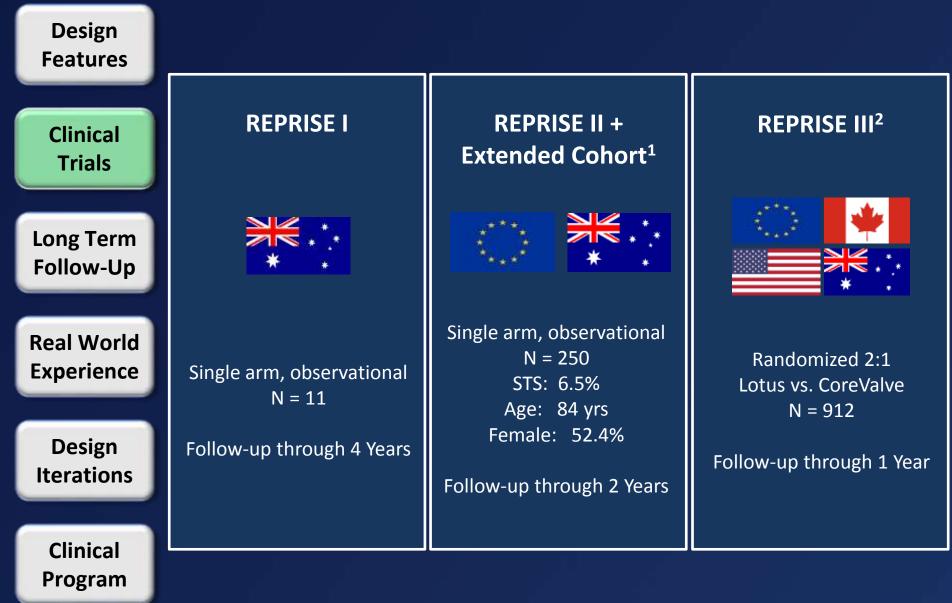
Long Term Follow-Up

•

•

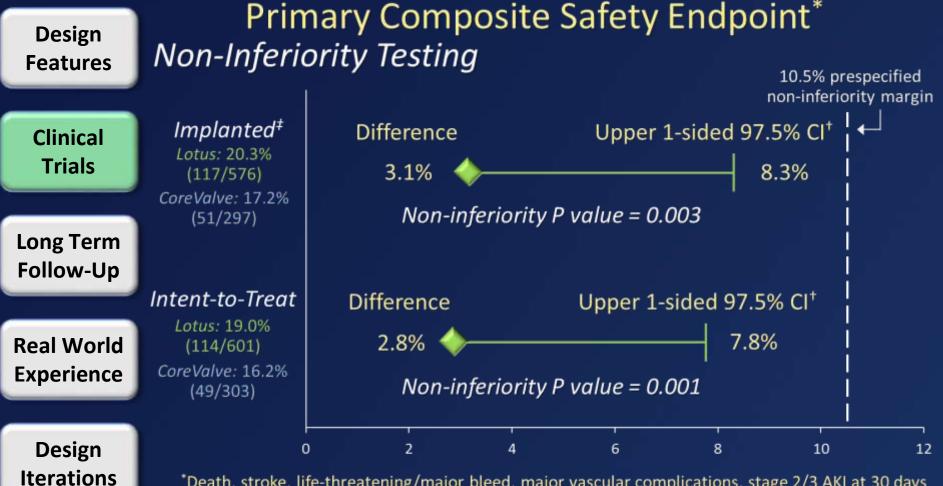
•

Real World Experience


Design Iterations

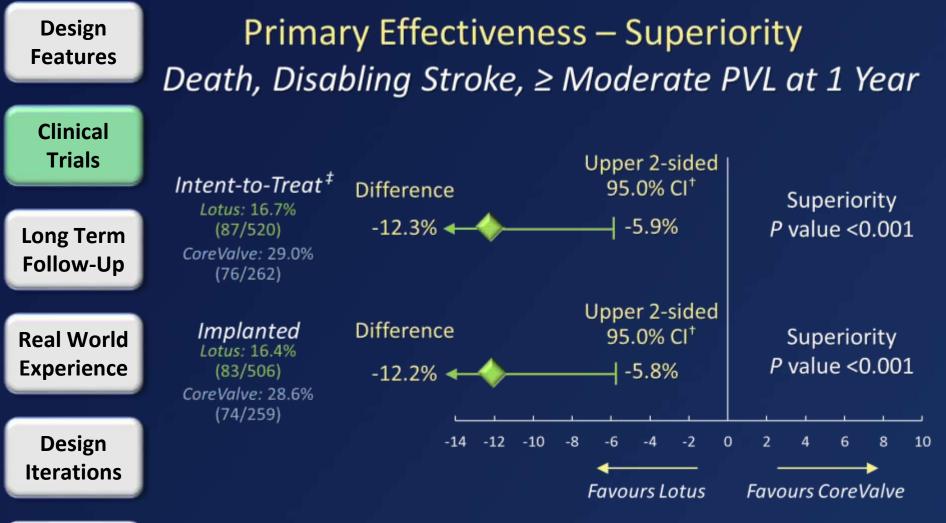
Clinical

Program


- Mechanically-expanded braided Nitinol frame
- Bovine pericardial valve
- Adaptive seal designed to minimize PVL
 - Repositionable and recapturable
 - No rapid pacing needed to deploy
 - Annular range: 20 27 mm
 - 3 valve sizes: 23, 25, 27 mm
- 18Fr sheath, vessels \geq 6.0 mm

¹Meredith, et al., presented at PCR London Valves 2016; ²Feldman, et al., presented at EuroPCR 2017

*Death, stroke, life-threatening/major bleed, major vascular complications, stage 2/3 AKI at 30 days


Non-inferiority criteria met for primary safety endpoint

Clinical Program Primary analysis set Upper 1-sided CI and P value are derived from the Farrington-Manning test

Clinical

Program

Superiority achieved for primary effectiveness endpoint

* Primary analysis set

Superiority P value and 95% CI are derived from the Chi-square test

30-Day Permanent Pacemaker

Major Vascular Complications

Clinical

Design

Features

•

•

•

•

•

•

Trials

Long Term Follow-Up

Real World Experience

Design Iterations

Clinical Program

- Self-expanding Nitinol frame
- Intra-annular bovine pericardial valve
- Porcine pericardium sealing cuff
- Resheathable and recapturable
- Rapid pacing is not required for full deployment
 - Annular range: 19 27 mm
 - 4 valve sizes: 23, 25, 27, 29 mm
 - 18Fr sheath for 23 and 25 mm THVs
- 19Fr for 27 and 29 mm THVs

Real-world outcomes in 389 patients have been reported

Design Features	Study		Туре		I STS (%)	Age (Yrs)	
Clinical	Perlman ¹		Multicenter: Canada		7 7.7 ± 5.7	80.8	
Trials	Sondergaard ⁸		Portico I Study	v 33	2 5.6	82.9	
Long Term Follow-Up	30 Day Outcomes						
Real World Experience	40% ■ Perlman (N=57) ■ Sondergaard (N=332) 30%						
Design	20%	20% 15.4%					
Design Iterations	10%	3.5% 2.2%	5.3% 1.5%	8.8%	8.8% 2.2%	3.5% NR	
Clinical Program	0%	All-Cause Mortality	Major Stroke	Pacemaker	Major Vascular Complications	Mod/Severe PVL	

¹Perlman, et al., *EuroIntervention* 2017; 12:1653-59; ²Sondergaard, et al., presented at EuroPCR 2016

Design Features Clinical Trials

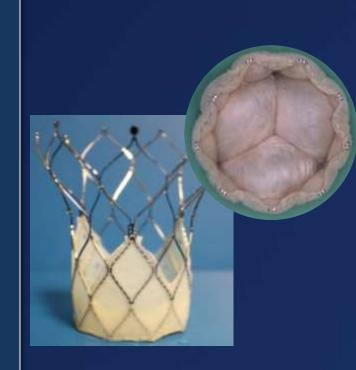
٠

•

٠

Long Term Follow-Up

Real World Experience


Design Iterations

Clinical

Program

Next Generation Valve and Delivery System

- Enhanced low profile delivery and e-sheath compatibility
- Advanced placement accuracy
 - Improved handle ease of use and ergonomics
- Enhanced valve stability
- Advanced PVL sealing feature
 - Expanded valve size offering

Design Iterations

•

Self-expanding Nitinol frame

- Porcine pericardial supra-annular valve
- Inner and outer pericardial skirts to minimize PVL
- Upper crown for supra-annular anchoring
- Lower crown minimizes protrusion into the LVOT
- Annular range: 21 27 mm
 - 3 valve sizes: S, M, L
 - 18Fr —sheath compatible, vessels ≥ 6.0mm

Clinical Program

Acurate neo CE Mark Study¹

Single arm, observational N = 89 STS: 7.5% Age: 83.7 yrs Female: 65.2%

Follow-up through 1 Year

Design

Features

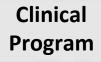
Real-world outcomes in over 1,000 patients have been reported

Clinical Trials	Study	Туре	Ν	STS (%)	Age (Yrs)
	Maeda ¹	Single Center: Osaka	15	7.5 ± 3.1	83.3
Long Term Follow-Up	Bagur ²	Multicenter: Canada	20	4.7 ± 2.3	82.7
	Jatene ³	Multicenter: Sao Paulo	49	6.1 ± 2.8	82.4
Real World Experience	Schaefer ⁴	Multicenter: Germany	69	5.6 ± 3.8	81.4
Design Iterations	Hamm ⁵	Single Center: Bad Neustadt	120	NR	81.4
	Moellmann ⁶	SAVI TF Registry	1000	6.0 ± 5.6	81.1

Clinical Program

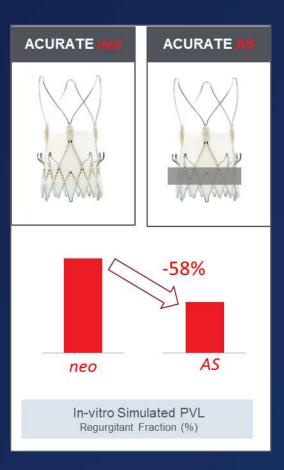
¹Maeda, et al., *Circ J* 2015;79:1037-43; ²Bagur, et al., *Catheter Cardiovasc Interv* 2016; epub; ³Jatene, et al., *Catheter Cardiovasc Interv* 2016; epub; ⁴Schaefer, et al., *Eur J Cardiothorac Surg* 2016; 50:368-73; ⁵Hamm, et al., *EuroIntervention* 2017; epub; ⁶Moellmann, et al., presented at TCT 2016

30-Day Permanent Pacemaker

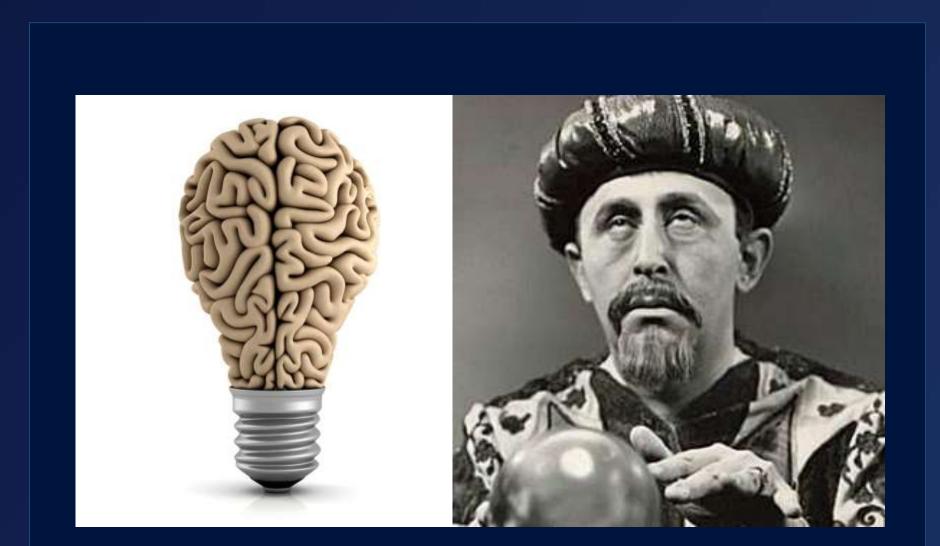


•

•


•

Design Iterations



ACURATE neo AS

- ACURATE neo with modified skirt material
- Expected reduction of PVL
- CE mark trial ongoing, 30 of 120 patients are enrolled

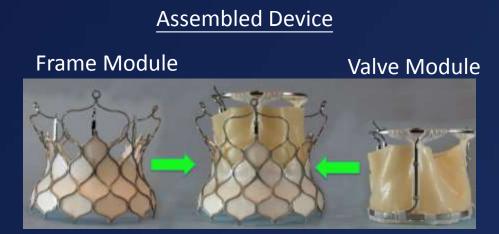
What lies Ahead?

Venus A-Valve System

- Self-expanding frame
- Porcine pericardial valve
- Supra-annular leaflets
- 23, 26, 29 and 32mm
- Higher radial force

Venibri

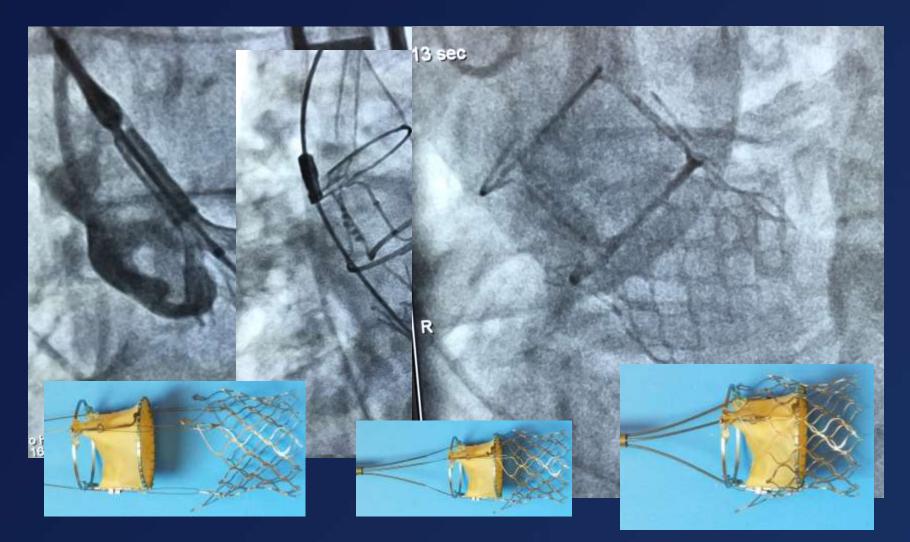
• Preloaded in the delivery system, reduced profile



- Reduce aldehyde residue, decrease tissue calcification
- Dry tissue, half of the thickness as the fresh tissue
- Total recovery in 20s
- The new version will be retrievable

Valve Medical

- Frame and leaflets are introduced separately
- *In-situ* docking (valve to frame in ascending Ao)
- 12 Fr delivery
- Bovine pericardium
- Not crimped



Frame and Valve Module Docking and Locking

First Successful 12 French Valve Medical TAVR Modular Implant

August 4, 2016, Instituto Dante Pazzanese São Paulo Grube E, Abizaid A, Leon MBL

Xeltis Endogenous Tissue Restoration (ERT)

Valve after bioabsorption

Synthetic matrix made of biobsorbable polymers

• Polymer leaflets mounted on nitinol self-expanding frame

Regrowth of endogenous tissue coincident with bioabsorption of polymer implant

Take Home Messages

- Many problems have been solved but pacemaker rates are still too high with some valves
- We need
 - more data in low surgical risk patients
 - data in younger patients
 - long term results
 - valves designed for patients with aortic insufficiency
- Based on the available data, TAVI may become the therapy of choice for most patients with aortic valve disease

Thank you for Your kind Attention!